Copied to
clipboard

G = C42.191D4order 128 = 27

173rd non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.191D4, C23.534C24, C22.2282- (1+4), C425C4.12C2, (C22×C4).144C23, (C2×C42).611C22, C22.359(C22×D4), (C22×Q8).450C22, C2.85(C22.19C24), C23.83C23.23C2, C23.81C23.26C2, C23.78C23.15C2, C2.C42.259C22, C23.63C23.37C2, C2.27(C22.35C24), C2.42(C23.38C23), (C2×C4×Q8).40C2, (C2×C4).393(C2×D4), (C2×C4).169(C4○D4), (C2×C4⋊C4).361C22, C22.406(C2×C4○D4), (C2×C42.C2).23C2, SmallGroup(128,1366)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.191D4
C1C2C22C23C22×C4C2×C4⋊C4C23.63C23 — C42.191D4
C1C23 — C42.191D4
C1C23 — C42.191D4
C1C23 — C42.191D4

Subgroups: 340 in 208 conjugacy classes, 96 normal (18 characteristic)
C1, C2 [×3], C2 [×4], C4 [×20], C22, C22 [×6], C2×C4 [×10], C2×C4 [×40], Q8 [×8], C23, C42 [×4], C42 [×4], C4⋊C4 [×26], C22×C4 [×3], C22×C4 [×12], C2×Q8 [×6], C2.C42 [×18], C2×C42, C2×C42 [×2], C2×C4⋊C4 [×3], C2×C4⋊C4 [×10], C4×Q8 [×4], C42.C2 [×4], C22×Q8, C425C4, C23.63C23 [×4], C23.78C23 [×2], C23.81C23 [×2], C23.83C23 [×4], C2×C4×Q8, C2×C42.C2, C42.191D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×4], C24, C22×D4, C2×C4○D4 [×2], 2- (1+4) [×4], C22.19C24, C23.38C23 [×2], C22.35C24 [×4], C42.191D4

Generators and relations
 G = < a,b,c,d | a4=b4=c4=1, d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=a2b, bd=db, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 13 42 79)(2 14 43 80)(3 15 44 77)(4 16 41 78)(5 100 72 34)(6 97 69 35)(7 98 70 36)(8 99 71 33)(9 105 75 46)(10 106 76 47)(11 107 73 48)(12 108 74 45)(17 115 83 56)(18 116 84 53)(19 113 81 54)(20 114 82 55)(21 52 87 111)(22 49 88 112)(23 50 85 109)(24 51 86 110)(25 121 91 62)(26 122 92 63)(27 123 89 64)(28 124 90 61)(29 58 95 117)(30 59 96 118)(31 60 93 119)(32 57 94 120)(37 67 103 127)(38 68 104 128)(39 65 101 125)(40 66 102 126)
(1 99 75 125)(2 36 76 68)(3 97 73 127)(4 34 74 66)(5 47 102 14)(6 105 103 79)(7 45 104 16)(8 107 101 77)(9 65 42 33)(10 128 43 98)(11 67 44 35)(12 126 41 100)(13 69 46 37)(15 71 48 39)(17 60 50 27)(18 118 51 92)(19 58 52 25)(20 120 49 90)(21 64 54 31)(22 122 55 96)(23 62 56 29)(24 124 53 94)(26 84 59 110)(28 82 57 112)(30 88 63 114)(32 86 61 116)(38 78 70 108)(40 80 72 106)(81 117 111 91)(83 119 109 89)(85 121 115 95)(87 123 113 93)
(1 119 3 117)(2 118 4 120)(5 114 7 116)(6 113 8 115)(9 27 11 25)(10 26 12 28)(13 31 15 29)(14 30 16 32)(17 35 19 33)(18 34 20 36)(21 39 23 37)(22 38 24 40)(41 57 43 59)(42 60 44 58)(45 61 47 63)(46 64 48 62)(49 68 51 66)(50 67 52 65)(53 72 55 70)(54 71 56 69)(73 91 75 89)(74 90 76 92)(77 95 79 93)(78 94 80 96)(81 99 83 97)(82 98 84 100)(85 103 87 101)(86 102 88 104)(105 123 107 121)(106 122 108 124)(109 127 111 125)(110 126 112 128)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,13,42,79)(2,14,43,80)(3,15,44,77)(4,16,41,78)(5,100,72,34)(6,97,69,35)(7,98,70,36)(8,99,71,33)(9,105,75,46)(10,106,76,47)(11,107,73,48)(12,108,74,45)(17,115,83,56)(18,116,84,53)(19,113,81,54)(20,114,82,55)(21,52,87,111)(22,49,88,112)(23,50,85,109)(24,51,86,110)(25,121,91,62)(26,122,92,63)(27,123,89,64)(28,124,90,61)(29,58,95,117)(30,59,96,118)(31,60,93,119)(32,57,94,120)(37,67,103,127)(38,68,104,128)(39,65,101,125)(40,66,102,126), (1,99,75,125)(2,36,76,68)(3,97,73,127)(4,34,74,66)(5,47,102,14)(6,105,103,79)(7,45,104,16)(8,107,101,77)(9,65,42,33)(10,128,43,98)(11,67,44,35)(12,126,41,100)(13,69,46,37)(15,71,48,39)(17,60,50,27)(18,118,51,92)(19,58,52,25)(20,120,49,90)(21,64,54,31)(22,122,55,96)(23,62,56,29)(24,124,53,94)(26,84,59,110)(28,82,57,112)(30,88,63,114)(32,86,61,116)(38,78,70,108)(40,80,72,106)(81,117,111,91)(83,119,109,89)(85,121,115,95)(87,123,113,93), (1,119,3,117)(2,118,4,120)(5,114,7,116)(6,113,8,115)(9,27,11,25)(10,26,12,28)(13,31,15,29)(14,30,16,32)(17,35,19,33)(18,34,20,36)(21,39,23,37)(22,38,24,40)(41,57,43,59)(42,60,44,58)(45,61,47,63)(46,64,48,62)(49,68,51,66)(50,67,52,65)(53,72,55,70)(54,71,56,69)(73,91,75,89)(74,90,76,92)(77,95,79,93)(78,94,80,96)(81,99,83,97)(82,98,84,100)(85,103,87,101)(86,102,88,104)(105,123,107,121)(106,122,108,124)(109,127,111,125)(110,126,112,128)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,13,42,79)(2,14,43,80)(3,15,44,77)(4,16,41,78)(5,100,72,34)(6,97,69,35)(7,98,70,36)(8,99,71,33)(9,105,75,46)(10,106,76,47)(11,107,73,48)(12,108,74,45)(17,115,83,56)(18,116,84,53)(19,113,81,54)(20,114,82,55)(21,52,87,111)(22,49,88,112)(23,50,85,109)(24,51,86,110)(25,121,91,62)(26,122,92,63)(27,123,89,64)(28,124,90,61)(29,58,95,117)(30,59,96,118)(31,60,93,119)(32,57,94,120)(37,67,103,127)(38,68,104,128)(39,65,101,125)(40,66,102,126), (1,99,75,125)(2,36,76,68)(3,97,73,127)(4,34,74,66)(5,47,102,14)(6,105,103,79)(7,45,104,16)(8,107,101,77)(9,65,42,33)(10,128,43,98)(11,67,44,35)(12,126,41,100)(13,69,46,37)(15,71,48,39)(17,60,50,27)(18,118,51,92)(19,58,52,25)(20,120,49,90)(21,64,54,31)(22,122,55,96)(23,62,56,29)(24,124,53,94)(26,84,59,110)(28,82,57,112)(30,88,63,114)(32,86,61,116)(38,78,70,108)(40,80,72,106)(81,117,111,91)(83,119,109,89)(85,121,115,95)(87,123,113,93), (1,119,3,117)(2,118,4,120)(5,114,7,116)(6,113,8,115)(9,27,11,25)(10,26,12,28)(13,31,15,29)(14,30,16,32)(17,35,19,33)(18,34,20,36)(21,39,23,37)(22,38,24,40)(41,57,43,59)(42,60,44,58)(45,61,47,63)(46,64,48,62)(49,68,51,66)(50,67,52,65)(53,72,55,70)(54,71,56,69)(73,91,75,89)(74,90,76,92)(77,95,79,93)(78,94,80,96)(81,99,83,97)(82,98,84,100)(85,103,87,101)(86,102,88,104)(105,123,107,121)(106,122,108,124)(109,127,111,125)(110,126,112,128) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,13,42,79),(2,14,43,80),(3,15,44,77),(4,16,41,78),(5,100,72,34),(6,97,69,35),(7,98,70,36),(8,99,71,33),(9,105,75,46),(10,106,76,47),(11,107,73,48),(12,108,74,45),(17,115,83,56),(18,116,84,53),(19,113,81,54),(20,114,82,55),(21,52,87,111),(22,49,88,112),(23,50,85,109),(24,51,86,110),(25,121,91,62),(26,122,92,63),(27,123,89,64),(28,124,90,61),(29,58,95,117),(30,59,96,118),(31,60,93,119),(32,57,94,120),(37,67,103,127),(38,68,104,128),(39,65,101,125),(40,66,102,126)], [(1,99,75,125),(2,36,76,68),(3,97,73,127),(4,34,74,66),(5,47,102,14),(6,105,103,79),(7,45,104,16),(8,107,101,77),(9,65,42,33),(10,128,43,98),(11,67,44,35),(12,126,41,100),(13,69,46,37),(15,71,48,39),(17,60,50,27),(18,118,51,92),(19,58,52,25),(20,120,49,90),(21,64,54,31),(22,122,55,96),(23,62,56,29),(24,124,53,94),(26,84,59,110),(28,82,57,112),(30,88,63,114),(32,86,61,116),(38,78,70,108),(40,80,72,106),(81,117,111,91),(83,119,109,89),(85,121,115,95),(87,123,113,93)], [(1,119,3,117),(2,118,4,120),(5,114,7,116),(6,113,8,115),(9,27,11,25),(10,26,12,28),(13,31,15,29),(14,30,16,32),(17,35,19,33),(18,34,20,36),(21,39,23,37),(22,38,24,40),(41,57,43,59),(42,60,44,58),(45,61,47,63),(46,64,48,62),(49,68,51,66),(50,67,52,65),(53,72,55,70),(54,71,56,69),(73,91,75,89),(74,90,76,92),(77,95,79,93),(78,94,80,96),(81,99,83,97),(82,98,84,100),(85,103,87,101),(86,102,88,104),(105,123,107,121),(106,122,108,124),(109,127,111,125),(110,126,112,128)])

Matrix representation G ⊆ GL8(𝔽5)

40000000
01000000
00100000
00010000
00003021
00000313
00002120
00001302
,
30000000
03000000
00100000
00010000
00002200
00000300
00000033
00000002
,
04000000
40000000
00200000
00030000
00004140
00002104
00004014
00000434
,
40000000
04000000
00030000
00200000
00001041
00000121
00004140
00002104

G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,2,1,0,0,0,0,0,3,1,3,0,0,0,0,2,1,2,0,0,0,0,0,1,3,0,2],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,2],[0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,4,2,4,0,0,0,0,0,1,1,0,4,0,0,0,0,4,0,1,3,0,0,0,0,0,4,4,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,4,2,0,0,0,0,0,1,1,1,0,0,0,0,4,2,4,0,0,0,0,0,1,1,0,4] >;

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4P4Q···4X
order12···244444···44···4
size11···122224···48···8

32 irreducible representations

dim11111111224
type+++++++++-
imageC1C2C2C2C2C2C2C2D4C4○D42- (1+4)
kernelC42.191D4C425C4C23.63C23C23.78C23C23.81C23C23.83C23C2×C4×Q8C2×C42.C2C42C2×C4C22
# reps11422411484

In GAP, Magma, Sage, TeX

C_4^2._{191}D_4
% in TeX

G:=Group("C4^2.191D4");
// GroupNames label

G:=SmallGroup(128,1366);
// by ID

G=gap.SmallGroup(128,1366);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,120,758,723,100,185,136]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽